
LLNL-CONF-406045

Scalable load-balance
measurement for SPMD codes

Todd Gamblin, Bronis R. de Supinski, Martin
Schulz, Robert Fowler, Daniel Reed

August 5, 2008

SC08
Austin, TX, United States
November 15, 2008 through November 21, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Scalable Load-Balance Measurement for SPMD Codes∗

Todd Gamblin∗

tgamblin@cs.unc.edu

Bronis R. de Supinski†
bronis@llnl.gov

Martin Schulz†

schulzm@llnl.gov

Rob Fowler∗
rjf@renci.org

Daniel A. Reed‡

daniel.reed@microsoft.com

∗Renaissance Computing Institute, University of North Carolina at Chapel Hill
†Lawrence Livermore National Laboratory

‡Microsoft Research

ABSTRACT
Good load balance is crucial on very large parallel systems,
but the most sophisticated algorithms introduce dynamic
imbalances through adaptation in domain decomposition or
use of adaptive solvers. To observe and diagnose imbalance,
developers need system-wide, temporally-ordered measure-
ments from full-scale runs. This potentially requires data
collection from multiple code regions on all processors over
the entire execution. Doing this instrumentation naively
can, in combination with the application itself, exceed avail-
able I/O bandwidth and storage capacity, and can induce
severe behavioral perturbations.

We present and evaluate a novel technique for scalable,
low-error load balance measurement. This uses a parallel
wavelet transform and other parallel encoding methods. We
show that our technique collects and reconstructs system-
wide measurements with low error. Compression time scales
sublinearly with system size and data volume is several or-
ders of magnitude smaller than the raw data. The overhead
is low enough for online use in a production environment.

1. INTRODUCTION
In large-scale, distributed-memory parallel computers, bal-

anced load is critical for system performance. Scientific
algorithms that run on these machines typically use syn-
chronous programming paradigms [24] in which excess com-
putation on one process can cause all others in the system
to idle. The impact of imbalance is becoming worse since
the size of the largest parallel supercomputers is increasing
dramatically. Six years ago, the largest machine had only
9,632 processors, while today’s largest machine, IBM’s Blue
Gene/L [15], has 212,992. A single overloaded process can
now force hundreds of thousands of other processes to wait.

∗Part of this work was performed under the auspices of
the U.S. Department of Energy, supported by the Office
of Science SciDAC PERI (DE-FC02-06ER25764) and by
Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344 (LLNL-CONF-406045).

Measuring and diagnosing load-balance in large-scale sys-
tems is difficult because all processes must be observed. Fur-
thermore, many scientific applications use data-dependent,
adaptive algorithms and may redistribute load dynamically,
so it is necessary to observe the system over time. Finally,
not all regions in a parallel code may contribute to a load
imbalance, so data must be collected over three dimensions:
i) where in the code the problem occurs; ii) on which pro-
cessors the load is imbalanced; and iii) when the imbal-
ance emerges during execution. Naively recording full traces
over full-scale runs is infeasible both because excessive I/O
communication can perturb application and system behavior
and because the data storage requirements can potentially
overwhelm system capacity.

The main contribution of this paper is a novel load mon-
itoring scheme that can reduce the volume of system-wide,
time-varying measurements by two to three orders of mag-
nitude. Our scheme uses lossy compression techniques de-
veloped for signal processing to compress two-dimensional
trace data. Rank (process id) and time comprise the dimen-
sions, and we use parallel wavelet encoding techniques to
reduce communication and storage requirements enough to
make on-line measurement of production runs feasible. This
scheme preserves process id and time information needed
for load balance monitoring. It also enables a time versus
error tradeoff decision, but even at the fastest settings, the
collected data is sufficient for problem diagnosis.

Part of our approach is to collect performance metrics as
rates normalized to the execution of application loops that
are classified as units of progress or effort. Progress loops
represent steps towards some goal expressed in the appli-
cation domain, e.g., time steps, experiments analyzed, or
transactions processed. Effort loops, or regions, are nested
within progress loops. They represent the work that is per-
formed to achieve a unit of progress. The number of itera-
tions of an effort loop may vary over time because of adap-
tation in the size of local data structures, or because of the
convergence properties of an iterative algorithm. The time,
or other performance metrics, for executing one iteration of
an effort loop may vary due to data locality issues, memory
or I/O errors, and other interactions with the system archi-
tecture. Examples of variable-effort codes include iterative
solvers, e.g., conjugate gradient, adaptive mesh refinement,
or time sub-cycling methods [10]. To measure and diagnose
dynamic load balance problems, we focus on the evolution
of these measures across processes.

This paper is organized as follows. In §2, we present our
model for load-balance analysis to give context for measure-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

ments made in later sections. §3 gives an brief overview
of wavelet analysis and describe its fitness for our problem.
In §4, we detail the architecture and implementation of our
tool, and in §5, we show through extensive experimental
validation that our techniques are scalable both in time and
space for real-world scientific applications. We also show
that our methods yield very low compression error. Finally,
in §6 and §7, we place our work in the context of other per-
formance analysis research and summarize our findings.

2. THE EFFORT MODEL
We have developed a broadly applicable model for load

in large-scale scientific applications. Our model is targeted
primarily at Single Program Multiple Data (SPMD) par-
allel applications, particularly those that use MPI [24]. As
MPI is the de-facto standard for large-scale scientific compu-
tation, the vast majority of distributed-memory supercom-
puter applications could use our framework. We introduce
two concepts, progress and effort, to quantify the high-level
load semantics of most SPMD applications. While we have
designed this model with MPI in mind, it is flexible enough
to model the behavior of a broad range of scientific applica-
tions. In this section, we give an overview of our model and
describe how it can be used to diagnose load imbalance.

Loops in SPMD applications can be divided into two cat-
egories:

Progress loops. Typically the outer loops in SPMD sim-
ulations, progress loops indicate absolute headway to-
wards some domain-specific goal. For example, in cli-
mate simulations, a progress loop iteration computes
the physics for some known interval of simulated time.
Each iteration is a global, synchronous step toward
completion, and measuring the duration of progress
loops provides an estimate of how long the application
will run. Even when the total number of time-steps
is not known a priori, the evolution of progress loop
performance indicates how the application’s total load
varies over time.

Effort loops. These are variable-time loops with possibly
data-dependent execution. Nested inside of progress
loops, effort loops may be part of a convergent numer-
ical algorithm (e.g., conjugate gradient methods) or
they may integrate over variable-size, or adaptively-
refined partitions (as in mesh-refining codes). We can
measure the work required to take a progress step by
counting effort iterations.

A number of factors contribute to the variable duration
of a set of effort loops. These include the size and com-
plexity of the data processed, the availability and perfor-
mance of resources such as I/O, the network, and even faulty
nodes. These in turn affect the performance of the enclosing
progress loops. Application data can impact many aspects
of the computation, including its complexity, the degree of
refinement, and the speed of convergence.

Effort loops provide a basis for comparison between differ-
ent progress loop iterations. The relationship between effort
loops and total time for their enclosing progress loop can
show how severely data dependency and intrinsic applica-
tion factors affect application run time. For example, if one
progress iteration takes longer than another, and an internal
effort loop takes significantly more iterations to converge,
we can attribute the problem to application data and the

efficiency of the numerical algorithm. If, however, progress
step performance varies but the numbers of iterations of the
effort loops are unchanged, some architectural or configura-
tion factor may be influencing performance.

We can compare progress and effort loop iterations within
the same process in a running application or between pro-
cesses. Intraprocess results capture the evolution of load
within that process. Interprocess comparisons can be even
more enlightening: they capture application load balance
and any relative performance anomalies between processes.

The presence of these two loop types in application code
leads to recurring patterns in an application’s full event
trace. Certain recurring events (or sequences of events) de-
limit successive iterations of both progress and effort loops,
and could be monitored system-wide. Ideally, detection of
these events could be automated; that is beyond the scope of
this paper. In this work, we manually instrument progress
events and we use elapsed time to estimate effort. This is
sufficient to illustrate our model without loss of generality,
as our framework could compress arbitrary effort measures
in place of time.

Progress and effort are high-level, application-semantic
measures. Hardware performance monitors (HPMs) can cap-
ture many architectural events [4, 22, 33]. In the long term,
we intend to couple these measures to enable problem diag-
nosis by modeling application behavior with four categories
of rates:

• The ratios of two HPM events observed over some mea-
surement period;

• HPM events per unit time measured over an observa-
tional interval;

• HPM events per unit of application effort or progress;
• Application-specific events per unit time over the ob-

servation period;

HPM event ratios and rates, such as cache miss rates,
misprediction ratios or instructions per cycle, measure the
efficiency with which certain architectural devices are oper-
ating. When expressed in terms of the application-specific
events (i.e., progress and effort), they capture application ef-
ficiency. Other events such as instruction counts and floating
point operations measure real work expended. Progress and
effort rates, are the “bottom line” measurements that cap-
ture the domain-specific aspects of application performance.
Correlation with HPM data provides deeper understanding
of performance. If we find that progress is slowing, we can
consult effort data to determine which code regions may
be causing the problem. Correlating the architectural and
application-specific rates supports root cause diagnosis.

3. WAVELET ANALYSIS
To collect system-wide effort data scalably, we need a com-

pact representation and a scalable aggregation method for
the data. Wavelet analysis has become a prominent, if not
the dominant, method for data reduction in fields as di-
verse as signal processing, digital imaging [1, 2], and sensor
networks [34]. A wavelet transform expands a function in
the spatial domain to a function of orthogonal polynomials
in L2(R). It is a particularly interesting operator because
wavelet expansions require very few terms to approximate
most functions.

The theoretical underpinnings of wavelet analysis [11, 35]
have deep roots in functional analysis, and are beyond the

. . .

. .

s
i
d

i

d
i
s

i
d

i
d

i

s
i
d

i

d
i
s

i
d

i
d

i

11

11

11

22

22

22

s
i
s

i

LL

Figure 1: Multiscale decomposition for our level L
2-D wavelet transform.

scope of this paper. We are concerned primarily with those
properties of the wavelet transform that lend themselves to
load balance measurement as described above. Here, we
provide a brief overview of the discrete wavelet transform,
as well as a discussion of its suitability for scalable load
measurement.

The discrete wavelet transform is an operation that con-
verts a set of N samples, s0 . . . sN−1 into two sets of N/2
coefficients. Recursive applications of the transform are ex-
pressed with levels, and we denote the inputs to the trans-
form as level 0, or s0

0 . . . s0
N−1. At level l, each sample sl−1

i is

converted to coefficients sl
0 . . . sl

n−1 and dl
0 . . . dl

n−1 accord-
ing to the recurrence relations:

sl
i =

D−1X
d=0

adsl−1
〈2i+d〉2n

dl
i =

D−1X
d=0

bdsl−1
〈2i+d〉2n

(1)

where n = N/2l, i = 0 . . . n − 1, ad and bd are coefficients
for low- and high-pass wavelet filters, respectively, and D
is the number of coefficients in the wavelet filters. 〈x〉m
is the modulus function defined so that 〈x〉m ∈ [0, m − 1]
for all x ∈ Z. The key observation here is that sl

i contain
low-frequency information from the input samples, while dl

i

represent high-frequency details. If the transform is applied
recursively L times, we call this a level L transform, and the
transformed data will have L scales.

D is the width of the filters (a and b) used, and this de-
pends on which wavelets are selected as the basis functions of
the transform. In this work, we use the Cohen-Daubechies-
Favreau 9/7 (CDF 9/7) wavelets [11]. The high-pass and
low-pass CDF 9/7 filters contain 9 and 7 real-valued ele-
ments, respectively. They have been shown to work well for
lossy compression of graphical images and are in wide use as
part of the JPEG-2000 standard [1] for image compression.

We have selected a wavelet transform for two reasons.
First, scalable parallel algorithms for the discrete wavelet
transform are known [25]. Second, certain properties of the
transform are particularly useful for load-balance monitor-
ing. Wavelet coefficients are sparse and well-suited to com-
pression. Further, the wavelet representation is locality-
preserving. Unlike the output of traditional global trans-
forms, (e.g., the Fast Fourier Transform and the Discrete

Cosine Transform), each wavelet coefficient contains both lo-
cality information and frequency information from the orig-
inal set of samples, which is essential for the purpose of our
analyses. The coefficients represent data at a particular fre-
quency, or scale (this is analogous to the level above), as well
as a particular position in the original samples. The wavelet
transform is thus multiscale in nature, in that sl

i from succes-
sively deeper levels of the transform represent progressively
larger-scale information from the original data. These low-
frequency, large-scale subbands provide a very compact ap-
proximation of the original data, enabling speedy analysis.
Such approximations can be selectively refined with high-
frequency information if more detail is needed.

In this paper, we use multiple two-dimensional, parallel
wavelet transforms to analyze measurements taken at run-
time. The two-dimensional transform is a series of one-
dimensional transforms applied alternately to the rows then
the columns of a matrix. Here, the row dimension is progress
steps, and the column dimension is the ranks of processes
in the parallel application. Values in each matrix represent
effort generated by some region in the code. Figure 1 shows
the resulting decomposition. The lower right quadrant of the
matrix contains the high frequency data from both dimen-
sions, the upper right and lower left quadrants contain high-
frequency data in one dimension and low-frequency data in
another, and the low-frequency information in the upper left
quadrant is recursively transformed L times.

4. A FRAMEWORK FOR SCALABLE LOAD
MEASUREMENT

We have designed and implemented a framework to scal-
ably measure and compress effort model data. Our design
consists of two major components. First, we have devised
a scheme for extracting effort model data from MPI events.
Our scheme monitors events as they occur, and determines
effort regions automatically. Second, we have designed a
scalable aggregation method using a parallel wavelet trans-
form and parallel compression techniques.

We employ a general-purpose tool design. We implement
our model data extraction techniques using the PMPI inter-
face, and we map MPI events to distributed effort matrices
that can be quickly aggregated. While this paper focuses
on load imbalance, our techniques are applicable to a much
broader range of problems. The effort model can be applied
to a wide range of scientific applications, and it provides
application-semantic information that is generally useful for
performance analysis. Our aggregation tool is decoupled
from the effort model; it simply compresses generic numer-
ical data. It could easily support runtime monitoring for
many other performance tools, such as profilers or internet
monitoring tools. It could also be used to efficiently collect
and visualize evolving algorithm/application data.

4.1 Effort Filter Layer
We have designed a filter layer to automatically extract

effort data from MPI applications. Since the filter layer is
implemented using the PMPI profiling interface, it is a link-
level library. We currently require the user to instrument
a single progress loop in her application, but once this is
added, the user need only link against our library to take
advantage of our data collection tools. Work to automati-
cally detect progress loops is currently in progress.

 for (int i=0; i < max_timestep; i++) {

a) MPI_Barrier();

 // convergent solver

 while (!converged) {

 // ... computational effort ...

b) MPI_Allgather();

 }

c) MPI_Allreduce(...);

 // .. further effort ...

d) MPI_Waitall(...);

 // progress marker

e) MPI_Pcontrol(0);

 }

(a,b)

(b,c)

e

d

c

a

(c,d)

(d,e)

b

(b,b)

Figure 2: Dynamic identification of effort regions.

To measure computational effort, we record the elapsed
time spent in the non-communication regions of the code.
We assume that effort regions are delineated by split oper-
ations, or globally synchronous communication constructs.
Split operations, which are the routines where processes
wait on their peers, include not only collectives such as
MPI_Allgather(), MPI_Barrier() and MPI_Reduce(), but
also MPI_Waitall(). MPI_Waitall() frequently ends phases
in physical simulations where nodes must block while wait-
ing for synchronous communication to complete. We allow
for customization of the exact set of calls considered split
operations to suit the application.

Figure 2 illustrates the effort filter layer with a state ma-
chine. In the figure, the shaded MPI_Pcontrol() and split
operation call sites correspond to states. When control passes
over these call sites, our state machine transitions along a
(start callpath, end callpath) edge. The tracer also adds the
elapsed time to the effort associated with this edge. Thus, we
record effort along the edges of our state machine, labeled
in the figure by their identifiers. At runtime, we monitor
elapsed time for each dynamic effort region separately, us-
ing the start and end callpaths as identifiers. The framework
also records time spent inside split operations as a separate
measure of communication effort. We use the publicly avail-
able DynStackwalker API [27] to look up callpaths.

Effort data is recorded at the end of each progress itera-
tion. Our filter appends effort values for all regions in the
current progress step to per-region vectors. Thus, at the
end of a run with n progress steps and m effort regions,
each process has m n-element vectors of effort values. Since
effort values are keyed by their dynamic callpaths, the user
can later correlate effort expended at runtime with specific
regions in the source code.

Currently, the user must call MPI_Pcontrol(0) to mark
progress events at runtime. The applications we examined
required the addition of only a single call in the main time
step loop, and these loops were generally easy to locate in
the source code without prior knowledge. As mentioned, we
hope to automatically detect progress loops from MPI traces
in the long term.

To divide the effort space into phases, the user of our tool
may insert additional MPI_Pcontrol(id) calls with unique
integer identifiers. When a call to MPI_Pcontrol(id) is
made with a non-zero parameter, our tool marks this as
a phase shift and records the parameter as the phase iden-
tifier. Effort is recorded separately for each phase so that
the user can view the behavior of each phase independently.
Phase markers are entirely optional.

4.2 Parallel Compression Algorithm
As discussed in §1, it is not feasible for a scalable trace

framework to aggregate and to store data from all processes
in large systems naively. We therefore designed a scalable,
parallel compression algorithm to gather effort data from all
processes in a parallel application. Our algorithm aggres-
sively targets the I/O bottleneck of current large systems
by using parallel wavelet compression to reduce data size.
We make use of all processes in large systems to perform
compression fast enough for real-time monitoring at scale.

We base our parallel transform on that of Nielsen, et
al. [25], although our data distribution is slightly different.
At the end of a trace, each process in the distributed ap-
plication has a vector of effort measurements (one for each
progress step) for each effort region. Each of these vectors
can be considered a row in a 2-dimensional, distributed ma-
trix. For transforms within rows of this matrix, the data
is entirely local, but transforms within columns are dis-
tributed. For good performance, we need at least D/2 (half
the width of the wavelet filter) rows per process. This en-
sures that only nearest neighbor communication is necessary
between processes. Further, for a level L transform, the
number of rows per process should be large enough that it
can be recursively halved L times and still not shrink below
D/2. To ensure this, we consolidate rows before performing
the transform. For a system with P processes, our algo-
rithm regroups the distributed matrix into P/S local sets
of S rows. Figure 3 shows how this would look for S = 4.
We then perform the parallel transform on the consolidated
matrix.

After transforming each matrix, our algorithm encodes
the transformed coefficients using the Embedded Zerotree
Wavelet (EZW) coding [31]. We chose this encoding for two
reasons. First, it parallelizes well [3, 19]. The data layout
for zerotree coding corresponds to the organization of trans-
formed wavelet coefficients, and encoding is entirely local to
each process. Second, it supports efficient space/accuracy
tradeoffs. The bits output in EZW coding are ordered by
significance. Each pass of the encoder tests wavelet coeffi-
cients against a successively smaller threshold and outputs
bits indicating whether the coefficients were larger or smaller
than the thresholds. The first few passes of EZW-coded data
are typically very compact, and they contain the most sig-
nificant bits of the largest coefficients in the output. We can
thus obtain a good approximation by reading a very small
amount of EZW data. Examining more detailed passes re-
fines the quality of the approximation at a cost of higher
data volume. In our framework, the number of EZW passes
is customizable, allowing the user to moderate this tradeoff.

In the final stage of compression, we take local EZW-coded
passes, run-length encode them, and then merge the run-
length encoded buffers in a parallel reduction. Each internal
node of the reduction tree receives encoded buffers from its
children, splices them together without decompressing, and
sends the resulting merged buffer to its parent. Splicing
is done by joining runs of matching symbols at either end
of the encoded buffer. We aggregate this compressed data
into a single buffer at the root of the reduction tree, and we
Huffman-encode [17] the full buffer.

The consolidation step of our algorithm sacrifices par-
allelism for increased locality and reduced communication
cost. However, we typically have many effort matrices to
transform, and we can perform S concurrent transforms. If

M
P

I R
an

k

0

1

2

3

4

5

6

7

n-1

n-3

n-2

n-4

0

4

n-4

Rows Initially
Distributed

Consolidate
Rows

Parallel
Wavelet

Transform
EZW

Encoding
Run-length

Encoding Reduction

Huffman
Coding

(Optional)

. .

 .

Figure 3: Parallel compression architecture.

Distribute-Work(P, S)
1 comm = MPI-Comm-Split(WORLD, rank % S, 0)
2 v = effortV ectors.first
3 while v <= effortV ectors.last
4 do set ← 0
5 while set < S and v ≤ effortV ectors.last
6 do base = (rank div S) ∗ S
7 if rank % S = set
8 then i = 1
9 while i < S

10 do Start-Recv-From(comm, base + i)
11 i ← i + 1
12
13 else Start-Send-To(comm, v, base)
14
15 set ← set + 1
16 v = effortV ectors.next
17
18 Finish-Sends-And-Receives(comm)
19 Do-Compression(comm, localRows)

Figure 4: Data consolidation algorithm.

we have S or more effort regions, we can distribute this work
over all processes in the system. Figure 4 gives pseudocode
for our algorithm. We first split the system into S separate
sets of ranks, each with its own local communicator, using
a call to MPI_Comm_split(). After this, the code behaves as
S separate parallel encoders executing simultaneously. Each
program has P/S processes, with ranks 0 to P/S. These
ranks map to modulo sets in the entire system’s rank space.

Within each modulo set, each process with id rank sends
its first local effort vector to the process with id 0. It sends
its next vector to the process with id 1, and so on until S
vectors have been sent. These sends consolidate data for S
effort matrices, after which S simultaneous instances of our
compression algorithm are performed. This entire process is
repeated until all effort matrices have been encoded.

4.3 Trace Reconstruction
Our compression tool produces a compact representation

of system-wide, temporally-ordered load balance data. Once
stored, we can decompress and reconstruct the data for anal-
ysis or for display in a visualization tool. The reconstruc-
tion process is simply the inverse of the compression pro-
cess. We Huffman-decode, run-length decode, EZW-decode,
and apply the inverse wavelet transform to the compressed
data. This decompression is independent for each effort re-
gion recorded at runtime, allowing focused data exploration.

The wavelet representation is particularly useful for load-
balance modeling because it preserves spatial information.
Since the transform records both scale information and spa-
tial information, features represented by coefficients in the
wavelet domain are reconstructed at their original rank and
progress step when the inverse transform is applied. Wavelets
are thus particularly useful for representing outliers, large
spikes, and aperiodic data.

Our compression scheme is lossy for several reasons. The
double-precision floating point values used in the CDF 9/7
wavelet transform introduce rounding error. The double-
precision output is then scaled and converted to 64-bit inte-
gers for EZW coding, which introduces quantization error.
Finally, the EZW output stream is truncated after a certain
number of passes, giving variable approximation error. Our
results show that the amount of error introduced by round-
ing and quantization is modest. Error introduced by trun-
cation of the EZW stream can be greater, but wavelet com-
pression and EZW coding have unique properties that make
this error less problematic. Most importantly, the wavelet
transform typically produces very few term approximations,
so a large number of coefficients in the transformed data are
zero or near-zero to begin with. Second, we filter out only
less significant data by truncating an EZW stream. Higher-
magnitude coefficients in the wavelet domain correspond to
more significant features in the original data, so even under
severe compression, wavelets yield a reconstruction that is
qualitatively similar to the original data.

 0
 1
 2
 3
 4
 5
 6

32 64 128 256 512 1024 2048O
ve

rh
ea

d
(%

 to
ta

l t
im

e)

Number of processes

Raptor
ParaDiS

Figure 5: Tool overhead for Raptor and ParaDiS.

5. EXPERIMENTAL RESULTS
We conducted experiments with our tool on two systems.

The first is an IBM BlueGene/L (BG/L) system with 2048
dual-core, 700 MHz PowerPC compute nodes. Each node
has 1 GB RAM (512 MB per core). A 3-D torus network
and two tree-strucutured networks are available for commu-
nication between processes. We used IBM’s xlC and gcc
compilers along with IBM’s MPI implementation. In our
tests, we used both of BG/L’s modes of execution: copro-
cessor mode, with the second core on each node dedicated to
communication; and virtual node (VN) mode, in which both
cores perform computation and communication. The second
system is a Linux cluster with 66 dual-processor, dual-core
Intel Woodcrest nodes. The 264 cores run at 2.6 GHz. Each
node has 4 GB RAM, and Infiniband 4X is the primary inter-
connect. We used the Intel compilers and OpenMPI, with
Infiniband used for inter-node communication and shared
memory used for intra-node communication.

We use two well-known scientific applications for our tests,
ParaDiS and Raptor, both of which scale to 16,000 or more
processes [20]. ParaDiS [6], models the dynamics of dislo-
cation lines in crystals as a network of nodes, or discretized
points, and arms, which connect nodes in the dislocation
network. ParaDiS uses an adaptive load balancer at run-
time to keep load across this network even. The dislocations
are divided into bounded regions called domains. Each pro-
cess computes on one domain, with the load balancer peri-
odically redistributing dislocations between domains. Rap-
tor [16], is an Eulerian Adaptive Mesh Refinement (AMR)
code that simulates complex fluid dynamics using the Go-
dunov finite difference method. Like ParaDiS, Raptor is
known to have variable amounts of per-process computation.
However, whereas the underlying physics (the time evolution
of dislocations) is the cause of imbalance in ParaDiS, load
imbalance in Raptor arises from mesh refinement.

5.1 Merge Time
We performed scaling runs of Raptor and ParaDiS on our

clusters and measured the time consumed by our compres-
sion algorithm. This includes transform, encoding, and file
write time. For comparison, we performed an identical set
of runs in which we dumped exhaustive data to disk. For
these experiments, the exhaustive dump is done after the
consolidation of rows. That is, each leaf node in our run-
length encoding reduction tree dumps its partition of the
distributed matrix to a file. Thus, our exhaustive dump
takes advantage of parallel I/O if it is available.

For both applications, we ran our simulations for 1024
time-steps. During compression, we allowed the wavelet
transform to recur as deeply as possible, and we set the

 0

 5

 10

 15

 20

 25

 30

 35

32 64 128 256 512 1024 2048 4096

O
ut

pu
t T

im
e

(s
ec

on
ds

) Raptor
Raptor, no comp.
Raptor, VN mode

Raptor, no comp., VN mode

(a) Raptor on Blue Gene/L

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

32 64 128 256 512 1024

O
ut

pu
t T

im
e

(s
ec

on
ds

) ParaDiS
ParaDiS, no comp.

(b) ParaDiS on Blue Gene/L

Figure 6: Compression and I/O times for 1024-
timestep traces.

initial phase of our algorithm to consolidate to 128 rows per
process. We truncated the output to 4 EZW passes. For
each run, we recorded total run time, time to write out raw
data, and time to compress and write compressed data.

Figure 5 shows the overhead of our tool in terms of percent
increase in application runtime, not including compression.
For both Raptor and ParaDiS, overhead was always 5% or
less compared to an uninstrumented run of the same applica-
tion. This is sufficient to measure production codes without
severe perturbation.

Figure 6 shows the time required to write out load balance
data at the end of a run, with and without our tool. For both
ParaDiS and Raptor, as we increase the system size, the load
on the I/O system also increases, and the time to write un-
compressed data increases modestly until the I/O system is
saturated. For Raptor, the I/O system saturates at around
1024 processes, while for ParaDiS it starts slightly earlier, at
512 processes. In both cases, once the BG/L I/O system is
saturated, write performance degrades significantly. Alter-
natively, our compression algorithm achieves fairly constant
performance across the task range. The time is primarily
consumed by transforming and encoding the data, and our
compressed files do not saturate the I/O system. Our ap-
proach scales well since our transform algorithm requires
only nearest-neighbor communication, and the EZW encod-
ing algorithm is entirely local. In fact, this implementation
of the wavelet transform achieves near-perfect speedup [25].
In the limit, the run-length encoding phase is linear in terms
of the compressed data size, but this data does not come
close to saturating our machine’s I/O system. Since our
machine’s I/O system is proportionally small, we expect our
scheme to keep data volume manageable for most large high-
performance I/O systems.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 8 16 24 32 40 48 56 64

B
yt

es

EZW Passes

Raptor
ParaDiS

(a) Compressed size vs encoded passes.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 8 16 24 32 40 48 56 64

C
om

pr
es

si
on

 R
at

io

EZW Passes

Raptor
ParaDiS

(b) Compression ratio vs encoded passes.

Figure 7: Varying EZW passes.

5.2 Data Volume
In this section, we quantify the volume of data produced

by our data collection algorithm. We characterize the degree
to which users can trade off accuracy for improved compres-
sion, and we compare the total volume of data produced by
our algorithm to the size of uncompressed output. For these
runs, we used a maximum of 128 rows per process, and we
allowed the wavelet transform to recur up to level 5, depend-
ing on the dimensions of the matrix to be compressed.

As mentioned, the EZW compression algorithm allows the
user to trade off error and data volume by adjusting the
number of EZW passes encoded. To characterize this trade-
off, we held system size constant and ran our tool varying the
number of passes. Figures 7(a) and 7(b) show compressed
data sizes and compression ratios from 1024-process, 1024-
timestep runs of raptor. We see that the first few EZW
passes do not consume a large amount of space when com-
pressed. For one pass, the compression ratio is over 10,000:1
and up to 5 passes, it is 100:1 or greater. The compressed
size then increases until around 35 passes, beyond which the
total size does not increase significantly.

We next conducted runs to measure total data volume and
compression ratio, varying system size and number of EZW
passes. For these runs, we ran Raptor for 1024 progress steps
and compressed data from its 16 effort regions. We also ran
ParaDiS for 1024 progress steps and compressed data from
its 120 effort regions. Figure 8 shows these results.

Figures 8(a) and 8(b) show raw compression ratios for
ParaDiS and Raptor. Recording only the first pass of the
EZW-encoded output, we can achieve compression ratios of
over three orders of magnitude for both codes. Recording
five passes gives compression ratios close to or above two
orders of magnitude, and the user of our algorithm could
choose fewer passes to obtain compression ratios in between
100:1 and 1000:1. Accordingly, Figure 8(c) shows that our
compressed representation is always well below the size of
the uncompressed data.

Uncomp.
1 pass
2 pass

3 pass
4 pass

5 pass
7 pass

10 pass

 1

 10

 100

 1000

 10000

 100000

 1e+06

64 128 256 512 1024 2048 4096

C
om

pr
es

si
on

 R
at

io
 (

:1
)

Processes

(a) Compression ratio vs. processes (Raptor).

 1

 10

 100

 1000

 10000

 100000

 1e+06

32 64 128 256 512 1024

C
om

pr
es

si
on

 R
at

io
 (

:1
)

Processes

(b) Compression ratio vs. processes (ParaDiS).

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

64 128 256 512 1024 2048 4096

T
ot

al
 d

at
a

si
ze

 (
by

te
s)

Processes

(c) Total compressed size vs. processes (Raptor).

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

32 64 128 256 512 1024

T
ot

al
 d

at
a

si
ze

 (
by

te
s)

Processes

(d) Total compressed size vs. processes (ParaDiS).

Figure 8: Total data volume and compression ratios.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 8 16 24 32 40 48 56 64

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

 (
%

)

EZW Passes

Quartiles

(a) Raptor

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 8 16 24 32 40 48 56 64

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

 (
%

)

EZW Passes

Quartiles

(b) ParaDiS.

Figure 9: Error vs. encoded EZW passes.

As discussed in §1, the collective output capability of all
nodes in modern supercomputers far exceeds the available
I/O bandwidth. Compression ratios in the 100:1-1000:1
regime enable system-wide data collection without pertur-
bation. Figure 6 validates this, as it clearly shows that our
algorithm is bounded only by the local time to transform
and to encode, while dumping exhaustive data is bound by
the capacity of the I/O system.

5.3 Reconstruction Error
There are three sources of error in our compression algo-

rithm: rounding error in the CDF 9/7 wavelet transform,
quantization error in the encoding process, and EZW pass
thresholding. The first two sources are unavoidable, but
they contribute only modestly to the total error. The third
can be adjusted by the user of our tool to trade off space and
accuracy. Obviously, we cannot afford to discard too much
data, as severe error would hinder the characterization of ef-
fort. We characterize error in our compression algorithm in
two ways. In this section, we provide a quantitative discus-
sion of error in our algorithm. In the next section, we discuss
the qualitative error of our method by comparing compressed
data from our tool to exact data for several effort plots.

We use root mean-squared (RMS) error, normalized to
the range of values observed, to evaluate reconstruction er-
ror quantitatively. For an m by n effort matrix E and its
reconstruction R, the normalized RMS error is:

nrmse(E, R) =
1

max(E) − min(E)

sX
ij

(Rij − Eij)2

mn
(2)

where max(E) and min(E) are the maximum and minimum
values observed in the exact data. We normalize the error
here so that we can compare the results across applications,
job sizes, and input sets.

1 pass
2 pass

3 pass
4 pass

5 pass
7 pass

10 pass
64 pass

 0

 5

 10

 15

 20

 25

 30

32 64 128 256 512 1024 2048

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

 (
%

)

Processes

(a) Raptor, Coprocessor Mode

 0

 5

 10

 15

 20

 25

 30

64 128 256 512 1024 2048 4096

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

 (
%

)
Processes

(b) Raptor, Virtual Node Mode

 0

 2

 4

 6

 8

32 64 128 256 512 1024

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

 (
%

)

Processes

(c) ParaDiS, Coprocessor Mode

Figure 10: Median Normalized RMS error vs. sys-
tem size for Raptor on BG/L.

We conducted 1024-process, 1024-progress step runs of
Raptor and ParaDiS, varying the number of EZW passes
output to the compressed files. Figure 9 shows the normal-
ized RMS error for each of these runs. We use boxplots to
give an idea of how error varies depending on the characteris-
tics of different effort regions. For Raptor, there are 16 effort
regions, and for ParaDiS, there are 120. Our box plots show
rectangles from the top to bottom quartile of compression
ratios, with whiskers extending out to the maximum and
minimum values. The median value is denoted by a black
tick inside the box.

For Raptor (Figure 9(a)) we see that the median error
decreases from around 10% for a 1-pass run to near zero
(8.8×10−6%) for a full 64-pass run. For the first few passes,
there is a wide range from 1% to 25%. After four passes, the

(a) 1 pass (b) 2 passes (c) 3 passes (d) 4 passes

(e) 5 passes (f) 7 passes (g) 15 passes (h) Exact

Figure 11: Progressively refined reconstructions of the remesh phase for 128-processor ParaDiS runs. All
measurements are in nanoseconds (X axis: rank 0-127, Y axis: progress step 0-255).

median error is 4% and only the top quartile of error val-
ues exceeds 10%. By seven passes, median error is less than
1% and no error value exceeds 10%. Comparing these error
values with the corresponding compression ratios shown in
Figure 7(b), we see that median 4% measurement error can
be achieved with compression ratios of over 500:1. The Par-
aDiS results in Figure 9(b) are similar to those from Raptor.
Median error starts above 10% with a wide spread, but it
drops quickly. Again, at seven passes error is less than 1%
and by 30 passes there is hardly any loss of accuracy. Across
the board, median error for ParaDiS is slightly lower than
that for Raptor.

To assess whether reconstruction error remains stable as
system size increases, we conducted scaling runs of Rap-
tor and ParaDiS, varying system size and number of EZW
passes. Again, we recorded exhaustive data along with com-
pressed data at the end of each run, and we compared the
two to obtain error values. Figure 10 shows the median
normalized RMS error for these runs. For ParaDiS, error
decreases as we scale the system size up, and it begins to
level off as we approach 1024 processes. The decrease in er-
ror here is likely due to use of strong scaling in our ParaDiS
runs. As the number of processes increases, the amount of
work per process shrinks, and more processes are left idle.
Compression improves as the number of similar idle pro-
cesses grows. Our scaling runs of Raptor show more variable
error, as we used a data set with heavier load. There are
spikes in median error for the 256- and 4096- process runs in
virtual node mode, as well as the 1024-process run of Rap-
tor in coprocessor mode. In all cases, we see that the spikes
are only significant for runs with one EZW pass. In these
cases, the median error can jump above 20%. However, the
median error is below 10% for all runs with three or more
EZW passes, and we showed previously that a truncating to
a modest number of EZW passes does not incur excessive
costs in terms of data volume or compression time. Median
error is lower than 5% with five passes for both applications,
regardless of system size.

5.4 Qualitative Evaluation of Reconstruction
In §3 we gave a brief overview of the most useful prop-

erties of wavelet transforms for reconstructing load balance
information. Specifically, we noted that the wavelet trans-
form yields a multi-scale representation of its input data,
and that it preserves local features. We ran 256 ParaDiS
time steps with 128 processes on our Woodcrest cluster and
plotted reconstructed effort for several phases of the applica-
tion’s execution. To illustrate the quality of reconstruction,
we also recorded exact data for comparison. To illustrate
load imbalance, we used a data set that was small enough
that load could not be allocated evenly across all processes.

Figure 11 shows reconstructions of the effort for ParaDiS’s
remesh phase for varying EZW pass counts. As discussed
in §5.3, lower numbers of passes correspond to higher lev-
els of compression and larger error, which the figure reflects.
With one EZW pass, the plot only crudely approximates the
shape of the exact data and the entire effort plot is shifted
down. With two passes, the plot, now at approximately the
right position, captures the most significant peaks although
finer details of the exact reconstruction are not present. Af-
ter only four passes, the shape of the reconstruction is very
close to that of the exact data, and small load spikes in the
first few iterations have appeared. By 15 passes, the recon-
struction essentially matches the exact data.

Figure 12 shows exact and reconstructed effort for four
phases of ParaDiS. Figures 12(a) and 12(b) show the load
distribution for ParaDiS’s force computation. This phase,
which is the most computationally intense region of Par-
aDiS, calculates forces on crystal dislocations. The recon-
struction very closely matches the original data. Both clearly
have two sets of processors where load is concentrated for
the duration of the run. These sets correspond to the pro-
cesses to which most of the initial data set was allocated.
The reconstruction preserves the initial peaks, as well as
finer details in the ridges that follow for both process sets.

Figures 12(c) and 12(d) show the effort for collision com-
putation in ParaDiS. We selected this phase because it il-

(a) Force Computation, Exact (b) Force Computation, Reconstructed

(c) Collision computation, Exact (d) Collision computation, Reconstructed

(e) Checkpoint, Exact (f) Checkpoint, Reconstructed

(g) Remesh, Exact (h) Remesh, Reconstructed

Figure 12: Exact and reconstructed effort for a 128-process, 256-timestep run of ParaDiS on our Woodcrest
cluster. All measurements are in nanoseconds (X axis: rank 0-127, Y axis: progress step 0-255). Reconstruc-
tions use four EZW passes.

lustrates the preservation of transient load. The collision
computation is data-dependent in that it occurs only when
simulated dislocations collide with one another. Our data
has numerous spikes in the load and our compression frame-
work preserves the larger ones. Noisy high frequency data at
the base of the spikes is not preserved with only four EZW
passes, but could be preserved using more passes.

Figures 12(e) and 12(f) show the load in the checkpoint
phase of ParaDiS. For these runs, checkpoints were written
to disk every 100 timesteps, and the load on all processes
increases at this point. The two system-wide load spikes are
clearly visible in the reconstruction at the same time steps at
which they occurred in the original execution. Although the
top of the spikes are slightly distorted, the reconstruction is
almost identical to the original data.

The remesh phase of ParaDiS, shown in Figures 12(g)
and 12(h), involves uneven load across processors, as well
as variable-frequency data. With only four passes, our tech-
nique is unable to capture all detail, but major features are
still present. The reconstruction preserves three spikes in the
initial iteration as well as the six ridges that run through all
time steps. Though not exact, this reconstruction is more
than sufficient for characterizing system-wide load distribu-
tion and guiding optimization. And, as Figure 11 shows, we
can increase the number of passes stored at a slight cost in
compression if more detail is required.

6. RELATED WORK
Traditional performance analysis tools are insufficient for

monitoring load-balance information on large systems. Pro-
filing schemes [12, 23, 32] provide a whole-run view of ap-
plication performance, but they discard timing information
that is critical to understanding load evolution. Full event
tracing tools [5, 12, 32] preserve timing information, but
they fail to scale on large systems as their storage require-
ments are linear both in time and in system size.

MRNet [29] is a software overlay network that provides a
generic interface to efficient multicast and reduction opera-
tions for scalable tools. MRNet uses a tree of processes be-
tween a tool front-end and a tool back-end to improve com-
munication and to minimize perturbation. MRNet would
enable us to collect effort model data at runtime, rather
than post-mortem. We plan to incorporate it into a future
version using the tool integration layer P NMPI [30].

SimPoint [28] detects application phases based on basic
block vectors (BBVs). It provides highly accurate results for
architectural simulations. However, the overhead of BBV
collection is too high for monitoring direct measurements.
Our effort region splitting method is similar in spirit, but
its simplicity gives us low enough overhead to operate on
active communication traces.

TAU [32] and ompP [14] support phased profiling, which
captures the evolution of performance metrics over time
without the unacceptable data volume of event traces. Our
tool is similar, but it collects aggregate time for effort regions
within progress steps instead of profile data within phases,
and our data volumes are lower than those of phased pro-
files. The approaches are complementary; our techniques
could be used to compress phased profile data at scale.

Previous efforts have used compression to efficiently store
trace data. The Open Trace Format [21] supports com-
pressed trace files using Zlib [13]. ScalaTrace [26] compresses
traces on-line at the event level, and it performs additional

inter-process compression at the end of execution. These
techniques are lossless, and they are well-suited to full event
traces. Our technique achieves very high rates of lossy com-
pression for numerical data.

Existing work has addressed the use of the wavelet trans-
form on parallel application trace data. The transform has
been used to reduce post-mortem trace volume [9], and its
output has been analyzed to extract program phase behav-
ior [7, 18] and program structure [8]. Our tool differs from
these in that it performs a parallel wavelet transform at run-
time instead of in a post-mortem analysis step. We currently
only use the wavelet transform for compression, but we are
investigating its use for online, interprocess analysis.

Distributed sensor networks, especially when battery pow-
ered and using radio communication, are extremely limited
in terms of both bandwidth and the total amount of infor-
mation they can afford to collect. Given these severe con-
straints, the Compass project at Rice [34] has explored the
use of wavelet techniques to efficiently manage sensed data,
especially in the context of detecting anomalies in sensed
physical fields.

7. CONCLUSIONS AND FUTURE WORK
Load imbalance is one of the most important factors lim-

iting scalability in large scale parallel computation. Hence,
understanding its impact and source is an essential step in
improving application performance. For large, long-running
jobs, however, the volume of data that must be collected
and analyzed is prohibitive. Programs with evolving per-
formance profiles are especially challenging since analyzing
the problem requires detailed traces that record large num-
bers of events per process. This is infeasible with traditional
approaches.

In this paper, we presented a novel approach to system-
wide monitoring that achieves several orders of magnitude
of data reduction and sublinear merge times, regardless of
system size. We introduced a model for high-level load se-
mantics in SPMD applications that can lend insight into
performance problems. Using aggressive compression tech-
niques from signal processing and image analysis, our ap-
proach can reduce and aggregate distributed load data to
accommodate significant I/O bottlenecks. Additionally, our
approach achieves very low error and high speed, even at
the highest levels of compression.

We demonstrated our novel load-balance analysis frame-
work using two actively used, full applications with dynamic
behavior: Raptor and ParaDiS. Our framework is capable
of efficiently handling both applications and captures infor-
mation that has yielded insight into the evolution of load-
balance problems, as demonstrated in our qualitative study
of ParaDiS. Additionally, our evaluation showed that, even
with timing and rank information, the size of the data files
grows slowly with the number of processors and hence en-
ables detailed measurement even at large scales. Further, we
demonstrated that significant qualitative features of com-
pressed data are preserved by our framework, even for very
small compressed file sizes.

We showed with post-mortem data collection that our
wavelet compression technique can achieve merge times suit-
able for online monitoring of production codes. We are cur-
rently hardening our tool for use as a component in an online
monitoring framework, and we are adding case studies of ad-
ditional applications at larger scale. Also, we plan to study

how to detect progress loops in MPI traces without explicit
instrumentation. We believe that MPI traces contain suffi-
cient information to extract the main time step loop from
most parallel applications. We plan to produce a fully auto-
matic and transparent framework to efficiently analyze and
optimize the load-balance behavior of any SPMD code.

8. REFERENCES
[1] M. D. Adams. The JPEG-2000 still image compression

standard. Technical Report 2412, ISO/IEC JTC 1/SC
29/WG, December 2002.

[2] M. D. Adams and F. Kossentini. JasPer: a software-based
JPEG-2000 codec implementation. In Proceedings of the
International Conference on Image Processing, 2000.

[3] L.-M. Ang, H. N. Cheung, and K. Eshragian. EZW
algorithm using depth-first representation of the wavelet
zerotree. In Fifth International Symposium on Signal
Processing and its Applications (ISSPA), pages 75–78,
Brisbane, Australia, August 1999.

[4] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. J.
Mucci. A portable programming interface for performance
evaluation on modern processors. The International
Journal of High Performance Computing Applications,
14(3):189–204, Fall 2000.

[5] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler.
Performance optimization for large scale computing: The
scalable VAMPIR approach. In Computational Science -
ICCS 2001, pages 751–760, May 2001.

[6] V. Bulatov, W. Cai, M. Hiratani, G. Hommes, T. Pierce,
M. Tang, M. Rhee, K. Yates, and T. Arsenlis. Scalable line
dynamics in ParaDiS. In Supercomputing 2004 (SC’04),
2004.

[7] M. Casas, R. M. Badia, and J. Labarta. Automatic phase
detection of MPI applications. Parallel Computing:
Architectures, Algorithms, and Applications, 38:129–136,
2007.

[8] M. Casas, R. M. Badia, and J. Labarta. Automatic
structure extraction from MPI applications. In European
Conference on Parallel Computing (Euro-Par), pages 3–12,
2007.

[9] M. Casas, R. M. Badia, and J. Labarta. Automatic
analysis of speedup of MPI applications. In International
Conference on Supercomputing (ICS), pages 349–358, Kos,
Greece, June 7-12 2008.

[10] P. Colella, D. T. Graves, D. Modiano, D. B. Serafini, and
B. v. Straalen. Chombo software package for AMR
applications. Technical Report (Lawrence Berkeley
National Laboratory), 2000. Available from:
http://seesar.lbl.gov/anag/chombo.

[11] I. Daubechies. Ten Lectures on Wavelets. SIAM: Society
for Industrial and Applied Mathematics, 1992.

[12] L. De Rose and D. A. Reed. SvPablo: A multi-language
architecture-independent performance analysis system. In
International Conference on Parallel Processing, 2000.

[13] P. Deutsch and J.-L. Gailly. ZLIB compressed data format
specification version 3.3. RFC 1950, Internet Engineering
Task Force, May 1996.

[14] K. Fürlinger and M. Gerndt. ompP: A profiling tool for
OpenMP. In Proceedings of the First International
Workshop on OpenMP (IWOMP), 2005.

[15] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu,
P. Coteus, M. E. Giampapa, R. A. Haring, P. Heidelberger,
D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas.
Overview of the Blue Gene/L system architecture. IBM
Journal of Research and Development, 49(2/3), 2005.

[16] J. Greenough, A. Kuhl, L. Howell, A. Shestakov,
U. Creach, A. Miller, E. Tarwater, A. Cook, and B. Cabot.
Raptor – software and applications for BlueGene/L. In
BlueGene/L Workshop. Lawrence Livermore National
Laboratory, 2003. Available from:
http://www.llnl.gov/asci/platforms/bluegene/agenda.html.

[17] D. A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the Institute of
Radio Engineers, 40(9):1098–1101, September 1952.

[18] T. Huffmire and T. Sherwood. Wavelet-based phase
classification. In PACT’06, pages 95–104, September 16-20
2006.

[19] R. Kutil. Approaches to zerotree image and video coding
on MIMD architectures. Parallel Computing,
28(7-8):1095–1109, August 2002.

[20] S. Louis and B. R. de Supinski. BlueGene/L: Early
application scaling results. In NNSA ASC Principal
Investigator Meeting & BG/L Consortium System
Software Workshop, February 2005. Available from:
http://www-unix.mcs.anl.gov/∼beckman/bluegene/
SSW-Utah-2005/BGL-SSW22-LLNL-Apps.pdf.

[21] A. D. Malony and W. E. Nagel. The open trace format
(OTF) and open tracing for HPC. In SC ’06: Proceedings
of the 2006 ACM/IEEE conference on Supercomputing,
page 24, New York, NY, USA, 2006. ACM.

[22] X. Martorell, N. Smeds, R. Walkup, J. R. Brunheroto,
G. Almási, J. A. Gunnels, L. De Rose, J. Labarta,
F. Escalé, J. Gimenez, H. Servat, and J. E. Moreira. Blue
Gene/L performance tools. IBM Journal of Research and
Development, 49(2-3):407–424, 2005.

[23] J. Mellor-Crummey. HPCToolkit: Multi-platform tools for
profile-based performance analysis. In 5th International
Workshop on Automatic Performance Analysis (APART),
November 2003.

[24] MPI Forum. MPI: A message passing interface standard.
International Journal of Supercomputer Applications and
High Performance Computing, 8(3/4):159–416, 1994.

[25] O. M. Nielsen and M. Hegland. Parallel performance of fast
wavelet transforms. International Journal of High Speed
Computing, 11(1):55–74, 2000.

[26] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski.
Scalable compression and replay of communication traces
in massively parallel environments. In International
Parallel and Distributed Processing Symposium (IPDPS),
March 26-30 2007.

[27] Paradyn Project, Madison, WI. DynStackwalker
Programmer’s Guide, July 13 2007. Version 0.6b. Available
from: http://ftp.cs.wisc.edu/pub/paradyn/releases/
current release/doc/stackwalker.pdf.

[28] E. Perelman, M. Polito, J.-Y. Bouget, J. Sampson,
B. Calder, and C. Dulong. Detecting phases in parallel
applications on shared memory architectures. In
International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

[29] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A
software-based multicast/reduction network for scalable
tools. In Supercomputing 2003 (SC03), 2003.

[30] M. Schulz and B. R. de Supinski. PNMPI tools: A whole
lot greater than the sum of their parts. In Supercomputing
2007 (SC’07), 2007.

[31] J. M. Shapiro. Embedded image coding using zerotrees of
wavelet coefficients. IEEE Transactions on Signal
Processing, 41(12):3445–3462, December 1993.

[32] S. Shende and A. Maloney. The TAU parallel performance
system. International Journal of High Performance
Computing Applications, 20(2):287–331, 2006.

[33] B. Sprunt. Pentium 4 performance-monitoring features.
IEEE Micro, pages 64–71, 2002.

[34] R. S. Wagner, R. G. Baraniuk, S. Du, D. B. Johnson, and
A. Cohen. An architecture for distributed wavelet analysis
and processing in sensor networks. In Information
Processing in Sensor Networks (IPSN06), pages 243–250,
New York, NY, USA, 2006. ACM Press.

[35] D. F. Walnut. An Introduction to Wavelet Analysis.
Birkhäuser Boston, 2004.

